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Introduction27

28

Figure 1: Traditional Drug Development Process

The traditional process for drug development29

can take approximately 12 to 16 years and cost30

approximately $1 to $2 billion [1]. The process31

consists of the following stages: drug discov-32

ery and development, pre-clinical development,33

Phase I-III clinical trials, and regulatory ap-34

proval. Due to the high cost and time burden35

of the traditional process, alternative options36

for drug development must be explored. Drug37

repurposing or repositioning is the process of38

applying known drugs/compounds that are al-39

ready on the market to new disease indications40

and has been successfully used to expedite this41

process. Repositioned drugs are exempt from42

the stages prior to Phases II and III of the clin-43

ical trials and FDA approval process reducing44

time and cost (Figure 1). For example, a liberal45

estimate for cost and number of years required46

to reposition a drug is approximately $300 mil-47

lion and approximately 6 years [1]. Putting po-48

tential drugs on the market faster can have positive downstream effects on population health49

outcomes, and the decreased cost makes drug repositioning attractive to researchers and patients.50

Due to the delays and barriers of going from a molecule to an approved drug, there has been a51

national push toward drug repositioning.52

53

Over the past 60 years, there has been significant increase in spending for drug development,54

with few drugs approved. A computing term, Moore’s Law, is the idea that as the number of55

transistors on a microchip (i.e., computing power) doubles every two years, the monetary cost of56

computers is halved. The term “Eroom’s Law” (i.e., the inverse of Moore’s Law) is used to describe57

the inverse correlation of increased monetary input into drug development and the number of drugs58

approved remaining flat or decreasing [1]. However, recent evidence has shown the dismantling59

of “Eroom’s Law” due to the following factors: an increase in genetics-based drug development,60

better use of information (i.e., decision-making), and less stringent thresholds for FDA approval61

[2]. Drug repurposing falls under all of these overarching factors that have indicated an increase in62

drugs coming out to market. Genetics-based prediction is one of the most common methods used to63

identify drug repurposing candidates. By using existing information and not wasting time or effort64

doing research that others have already done, drug repurposing can lead to better decision-making.65

Lastly, although recent evidence points to less stringent thresholds for FDA approval by way of the66

Orphan Drug Act [2], there are also fast-track approval pathways for drug repurposing candidates67

[3]. Therefore, drug repurposing can help minimize the disparity between increased spending for68

drug development and number of drug approvals.69

70

From the perspective of monetary returns on drug research, according to BCC Research, the global71

market for drug repurposing reached $24.4 billion in 2015 and was projected to reach over $3072
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billion in 2020 [4, 5]. Many successful attempts of drug repurposing have been accidentally discov-73

ered side effects or extensive, time intensive research on particular drug properties [6]. Sildenafil74

was originally developed to treat angina and was repurposed, by chance, to treat erectile dysfunc-75

tion. Global sales for sildenafil for erectile dysfunction totaled $2.05 billion in 2012 [7]. Minoxidil76

was developed to treat hypertension and was repurposed for hair loss through identification of77

hair growth as an adverse side effect. Global sales for minoxidil for hair loss were $860 million in78

2016 [4]. Both sildenafil and minoxidil were repurposed through retrospective clinical analysis [4, 6].79

80

Often, successful examples of drug repurposing have been by chance, but recent approaches that81

are more direct are being explored in the field. Computational drug repurposing consists of using82

computational approaches for systematic data analysis that can lead to forming drug repurposing83

hypotheses [4]. Omics-based repurposing, for example, has been shown to increase success in clin-84

ical development of a drug candidate [2]. -Omic information can provide a comprehensive view of85

a set of molecules and insight into the functions of a cell, tissue, or organism. The most mature86

-omic field, genomics, focuses on identifying genetic variants associated with disease, response to87

treatment, and more [8]. However, often times the translation from research to clinical develop-88

ment is hindered by a lack of information bridging the two. In computational drug repurposing,89

researchers often output a series of drug-disease associations or drug-target interactions; of which,90

some results are true positives and many are false positives. Narrowing the candidate list is im-91

portant to identify the strongest candidates that have the highest chance of successfully treating92

a condition, and this can be done through drug candidate validation (i.e., providing independent93

supporting evidence). The various types of supporting evidence that researchers have considered94

as validation were described in detail in the previous literature review [9], and of all computational95

validation methods, retrospective clinical analysis was found to be the strongest.96

97

Electronic medical records (EMR) contain an overview of a patient’s health that can be used98

to bridge the gap between drug repurposing research and clinical implementation. Retrospective99

clinical analysis, and more specifically, EMR validation is a powerful method to bridge the gap be-100

tween research and clinical development. The combination of structured components of the EMR101

and unstructured clinical notes contain information that can provide a comprehensive, longitudi-102

nal view of patient health. In related work, EMR data has been used to predict the probability103

of treatment success using statistical approaches [10, 11]. To do so, researchers identify patient104

populations, separate patients as cases and controls, and predict disease improvement caused by105

treatment with a drug repurposing candidate.106

107

For patient population identification and case-control separation, there are various approaches108

to computationally phenotype conditions [12], but in drug repurposing studies the main identifica-109

tion approach is searching EMR databases with ICD-CM billing codes [10]. Although billing codes110

have been widely used in the past, a comprehensive search strategy would include other sources111

of information to ensure that all patients who may have a disease diagnosis are accounted for in a112

sample. For example, in the case of a patient who has breast cancer, the EMR would include billing113

codes, images, biopsy results, and more variables which could be used to define a disease diagno-114

sis. In research on EMR validation for drug repurposing candidates, computational phenotyping115

approaches must be considered to construct comprehensive search strategies for patient population116

identification.117

118

To predict probability of treatment success for validation, studies have predominantly used data119

from the structured components of the EMR, and some have supplemented missing structured120
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data with information from clinical notes. However, many challenges in analyzing the unstruc-121

tured components (e.g., variability of natural language expressions) have made analysis of clinical122

free-text difficult and computationally intensive. For drug repurposing, the notes contain medical123

reasoning behind prescriptions as well as documentation of any adverse side effects. Advances in124

clinical natural language processing (NLP) like in named entity recognition (NER) can facilitate125

large-scale analysis of unstructured clinical notes as well, broadening the scope of EMR data that126

can be accessed and analyzed. The predictive task has previously been solved with finely focused127

condition-specific models, indicating a need for a generalizable method for EMR validation of drug128

repurposing candidates. Machine learning models have been successfully used in EMR validation129

in related work, and deep learning models have produced promising results in other predictive con-130

texts [13, 14]. In comparison to using statistical models, using machine or deep learning approaches131

may make EMR validation algorithms more generalizable.132

133

Three condition cases will be considered in the study: breast cancer, oral cancer, and primary134

ciliary dyskinesia (PCD). Breast cancer is a highly prevalent and widely studied condition in drug135

repurposing and will serve as a proof of concept for the EMR validation algorithms that will be136

created. 1 in 8 women (13% of women) receive a breast cancer diagnosis in the United States137

[15]. Oral cancer is a less commonly researched cancer, which needs early detection and treatment,138

and affects an estimated 10.5 adults in 100,000 (0.0105% of all adults)[16]. PCD is a rare, genetic139

disease, that also needs early detection and treatment, and affects an estimated 1 in 16,000 people140

(0.00625% of people)[17]. Having various condition cases will test the EMR validation algorithms141

as they differ greatly in terms of medical need and prevalence.142

143

In the proposed study, I will develop algorithms for the cohort extraction and disease improve-144

ment prediction stages of EMR validation for drug repurposing candidates. The aim will be to145

produce algorithms for computational phenotyping and improvement prediction, presenting a way146

for researchers conducting drug repurposing studies to validate their results with EMR. Section 1147

(p. 2) includes the problem definition, motivation for this work, and research aims. Section 2 (p. 6)148

describes studies using EMR for validation and drug candidate prediction as well as the limitations149

in current work. Section 3 (p. 9) describes the plan for the proposed work. Section 4 (p. 24) is the150

timeline. References are included at the end of the document (p. 26).151

Problem Definition And Motivation152

Between 2007 and 2009, drug repurposing led to the launch of 30-40% of new drugs, which addresses153

the time and cost burden of drug development but also presents opportunities to address unmet154

medical need [18]. For example, rituximab was developed as a treatment for various cancers but was155

repurposed to treat rheumatoid arthritis. From the cost perspective, global sales for rituximab in156

2012 were greater than $7 billion [19], where approximately 17% of sales were targeted for rheuma-157

toid arthritis [20]. From the medical need perspective, rheumatoid arthritis is a complex disease158

for which its pathogenesis is only partially understood. For conditions with poorly characterized159

pathophysiology, drug repurposing is often the only route for drug development. Lopez-Olivo et al160

(2015)[21] showed that the usage of rituximab for rheumatoid arthritis has had positive impact on161

patient quality of life. 70 of 100 people who took rituximab in combination with methotrexate, the162

standard treatment, perceived their general health to be better in comparison with 36 of 100 people163

who took the standard treatment, methotrexate, alone [21]. Drug repurposing is not only aimed at164

reducing time and cost burden for drug developers, it is also a critical method to meet medical need.165

166
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Past retrospective clinical analysis successes have been random events, motivating systematic ap-167

proaches. With the increased proliferation of EMR systems, the volume of EMR data is predicted168

to grow astronomically [22]. The power of health data creates an opportunity to explore clini-169

cal records and validate drugs by identifying cases in which clinicians have prescribed drugs for170

purposes other than their intended or cases in which patients are taking multiple drugs that have171

unprecedented interactive effects. Previous successful applications of drug repurposing from retro-172

spective clinical analysis were not conducted with systematic computational analysis [23, 24, 25];173

however, many successes from this method motivate the creation of automated, computational ap-174

proaches.175

176

Although EMR data is powerful, quickly growing, and has been used successfully in the past,177

there are many factors contributing to its complexity. The physician workflow consists of four178

overarching components: information review, patient assessment, EMR documentation, and care179

delivery. For a single patient visit, EMR documentation should include information verbally pro-180

vided by the patient, previous written documentation (e.g., family history), and documentation of181

care (e.g., diagnostic strategy, treatment plan) [26]. To provide context, if there is a female patient182

who is 24 years of age, she may have at least 1 to 3 visits yearly of different types (e.g., annual183

exam, emergency), which would constitute 24 to 72 visits over her current lifetime, with each visit184

having its own documentation. If the patient only visited one healthcare system in her lifetime, all185

visits would be documented in one EHR system, assuming the system had been instituted before186

her first visit or that the system contains legacy records. However, even in the simplistic example187

provided, there are many intersecting components of EMR data that are being generated over time188

(e.g., laboratory results, medical imaging), demonstrating the vast, dense, and longitudinal nature189

of EMR data.190

191

Along with the complexity of EMR data, using EMR for clinical research has been hindered by192

the lack of support for data manipulation provided by electronic health record (EHR) systems.193

The original purpose of EHR was to support clinical care and billing. Workflows for clinical re-194

search were integrated as a secondary purpose; however, significant progress has been made since195

the inception of EHR, including the Meaningful Use incentives put forth in 2009. Consequently,196

various common data models have been instituted to allow researchers easier access to EMR and197

help with data integration, but these efforts are still in progress. Lack of data interoperability and198

data integration are a few of many issues persisting with EMR use for research [27].199

200

EMR complexity and the lack of support for data manipulation in EHR lend to the use of machine201

learning methods for data extraction and analysis. Traditionally, statistical methods have been202

used to perform retrospective clinical analysis. However, in dealing with high-dimensional data,203

machine learning methods can outperform traditional statistical approaches. Machine learning uses204

data-driven and statistical rules in order to transform feature representations of input data into205

desired outputs. It can be described as an extension of traditional statistical approaches [28]. Ideal206

machine learning tasks are aimed at developing systems that are too expensive in terms of pro-207

cessing time or power or too difficult to program explicitly as standard computational algorithms.208

There are drawbacks to machine learning, however, that can be addressed with deep learning209

approaches. Feature engineering (i.e., transforming raw data into a form understandable by the210

machine) is needed for machine learning approaches. However, deep learning consists of representa-211

tion learning methods, where the machine can be fed raw data, detect representations of the data,212

and complete the prediction task. The feature representations generated are done using general213

procedures, so domain expertise is not required in the process, allowing for a more generalizable214
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approach [13]. For computational phenotyping, a high level of transparency is required, so only215

machine learning approaches will be used for cohort extraction and case/control prediction. For216

treatment success prediction, both machine and deep learning approaches will be explored. While217

deep learning methods are not as transparent as machine learning methods, they have can achieve218

higher performance in some cases, as demonstrated in research areas [29, 30, 31]. To leverage the219

full potential of EMR, machine and deep learning methods can be used to take patient-level data220

variables and predict viability of drug repurposing candidates.221

Research Aims222

Aim 1: Produce a computational phenotyping algorithm using electronic medical records.223

Aim 2: Build a pipeline for retrospective clinical record analysis to validate drug repurposing224

candidates.225

Background And Related Work226

227

Over the past decades, there has been increasing implementation of electronic health record (EHR)228

systems, allowing for a large amount of data to be produced on the patient and population levels. In229

terms of drug repurposing, EHRs can provide longitudinal information that can be used to predict230

drug outcomes and validate drug candidates [10]. Given a drug candidate and its target indication,231

various methods have been used to connect the two.232

233

A review was conducted following the PRISMA Statement for systematic reviews [32] to iden-234

tify key literature associated with drug repurposing and validation [9]. Subsequently, studies using235

electronic health records for either drug repurposing candidate prediction or validation were se-236

lected. After 2386 articles were screened, 732 were reviewed in full, and 10 studies using clinical237

records as a data source were selected. Of the 10 studies, 5 used clinical records in validation and 5238

used clinical records in drug candidate prediction. The studies using clinical records in validation239

and prediction are described in detail in terms of prediction task, dataset, and assumptions. Sample240

size estimates from literature are shown in Table 1.241

EMR Data Use In Validation242

In studies using clinical records for validation, the validation methods used included Cox propor-243

tional hazard analysis [10, 11, 24], other statistical analysis [25], and off-label use extraction [23].244

Of all the studies, Xu et al (2015)[10] is the only study that did not include any candidate predic-245

tion and only sought to validate a drug repurposing hypothesis. The study used a stratified Cox246

proportional hazards model to validate the association between metformin use, which is originally247

meant for type 2 diabetes mellitus treatment, and cancer mortality. In the study, diabetic individ-248

uals with breast, colorectal, lung, or prostate cancer were identified and divided into four groups249

based on disease and medication statuses. Consequently, clinical covariates were retreived from250

structured components of the EMR using data extraction algorithms and retrieved from clinical251

narratives using NLP algorithms. Then, the statistical model was used to examine the effect of252

metformin use on cancer survival for each diabetes group [10].253

254

Other studies using Cox proportional hazards models aimed to associate predicted drug use with255
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treatment success [11, 24, 25]. Khatri et al (2013)[11] identified therapeutics to combat acute re-256

jection in organ transplantation and used models to associate statin use with graft survival. The257

study adjusted for donor and recipient ages, repeat transplantation, and year [11]. Gayvert et258

al (2016)[24] focused on drug repurposing for cancer and used retrospective cohort analysis with259

EMR to validate the association between dexamethasone treatment and prostate cancer. The study260

used Kaplan-Meier survival analysis and used the Cox proportional hazards test to test for signifi-261

cance. A logistic regression model was then developed to assess the relationship between treatment262

(e.g., dexamethasone and control) and prostate cancer diagnosis, independent of prostate cancer263

confounders. Using the logistic regression model, the study found that dexamethasone had a pro-264

tective effect against prostate cancer. Xu et al (2018)[25] and Gottlieb et al (2014)[23] did not265

provide detailed methodologies for their validation processes. Xu et al (2018)[25] provided back-266

ground for patient record extraction, cohort selection, and stated t-test p-values along with derived267

conclusions. Gottlieb et al (2014)[23] extracted off-label uses from EMR but did not provide a268

methodology for the process.269

EMR Data Use In Drug Candidate Prediction270

In studies using clinical records for drug candidate prediction, both statistical analysis methods271

[33, 34, 35] and machine learning methods [36, 37] were used. The statistical methods used were272

fixed effect models and machine learning methods like logistic regression, random forest, and neural273

networks for classification.274

275

Koren et al (2018)[36] used machine learning methods to predict computational drug repurpos-276

ing candidates for hypertension from electronic health records. The dataset used contained 30,705277

patients. The study used logistic regression as a form of propensity score matching in order to278

predict treatment success for potential anti-hypertensive agents. For cohort identification, Koren279

et al (2018)[36] only included patients that had at least two initial systolic and diastolic blood280

pressure values in a given timeframe. Low et al (2017)[37] used both gene expression and EMR281

data to predict drug candidates for breast cancer patients. The study constructed a logistic re-282

gression model with pairwise interactions and used lasso regularization. In the EHR analysis, the283

study differentiated between individual and combination effects of drug exposure. Demographic,284

tumor, and treatment variables from patient records were processed into a matrix to account for285

concomitant drug exposures and possible pairwise combinations that met inclusion criteria were286

outputted. All variables were included in the logistic regression model. The task was structured as287

prediction of binary 5-year mortality, and results on a 10% holdout validation set were presented288

(90% area under the curve (AUC), 40% sensitivity, 99% specificity) [37]. The study included 1,212289

cases (i.e., dead) and 8,733 controls (i.e., alive), with a 10%/90% data split in response variables.290

Low et al (2017)[37] further differentiated between variables associated with survival in the EHR.291

Variables associated with lower mortality included lower tumor stage and living in a neighborhood292

of the top 20% in socioeconomic status in California. Variables associated with higher mortality293

included: advanced tumor stage, having triple negative breast cancer (TNBC), and older age at294

diagnosis [37]. The study did not differentiate groups by breast cancer subtype in the primary295

classification but consequently conducted a subgroup analysis. Two synergistically beneficial pairs296

were found for breast cancer treatment: anti-inflammatory agents with lipid modifiers as well as297

anti-inflammatory agents with anticancer hormone antagonists.298

299

Three studies used variations of fixed effect models for prediction. Paik et al (2015)[35] com-300

bined EMR laboratory test results and genomic signatures from public databases to construct a301
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bipartite network for drug repurposing. The study calculated drug-drug and disease-disease simi-302

larities using clinical and genomic signatures to create two similarity matrices each for drug-disease303

association prediction. Similarities between pairs were represented as edge widths. Kuang et al304

(2016)[33] proposed a continuous self-controlled case series (CSCCS) model for computational drug305

repurposing. The use case presented in this study is to look for drugs that can control fasting blood306

glucose levels, which are important for diabetes regulation. To identify off-label usage, Kuang et307

al (2016)[33] examined fasting blood glucose levels before and after any drug was prescribed to a308

patient. The CSCCS model was derived from the linear fixed effect model to take drug prescrip-309

tion history into consideration by differentiating between drugs prescribed for longer or shorter310

durations. To account for different effects of drugs associated with impacting fasting blood glucose311

levels, the study separated the drugs into three categories: decrease levels, increase levels, and312

irrelevant/possible discoveries [33]. The study did not provide details on how the EHR data was313

extracted or how the cohort was identified. In another study conducted by the same group, Kuang314

et al (2016)[34] used baseline regularization and a variant to extend the one-way fixed effect model.315

The baseline regularization model assumes that there is a baseline state for fasting blood glucose316

level and that based on various drug exposures, there is an exposure state for fasting blood glucose317

level. Based on these assumptions, the study constructed a fixed effect model with regularization318

on baseline parameters. Like Kuang et al (2016)[33], the study did not include any details on319

cohort identification and EHR data extraction [34].320

Table 1: EMR sample sizes in literature

Study Sample size (in patients)

EMR Use in Validation

Khatri et al (2013) 2,515
Xu et al (2015) 42,165
Gayvert et al (2016) –
Gottlieb et al (2014) –
Xu et al (2018) –

EMR Use in Prediction

Paik et al (2015) 530,000
Koren et al (2018) 30,000
Kuang et al (2016)[33] & (2016)[34] 64,515
Low et al (2017) 9,945

Limitations321

Many studies rely on the linear fixed effect model in order to predict drug candidates. Statistical322

approaches to causal inference are very powerful; however, machine learning algorithms are able to323

outperform classical statistical techniques in cases with high-dimensional data. In addition, many324

studies focus solely on using structured data (e.g., ICD-CM billing codes) from the EMR as they are325

more accessible than data from clinical notes. The use of ICD-CM billing codes does not provide326

enough granularity in defining a disease diagnosis to draw conclusions on whether or not particular327

groups of patients would benefit from taking a specific repurposed drug. The exception is the work328

conducted by Xu et al (2015) as they used NLP algorithms to extract data from clinical notes. The329

clinical notes contain background information like patient occupation, duration of symptoms, and330

medical reasoning for prescriptions given. The study focused on filling missing data from structured331

fields with information extracted from the clinical notes; however, the study did not use any extra332
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information from the clinical notes to influence prediction. Other weaknesses of all studies discussed333

are the lack of mechanistic basis for treatment success and analysis on which groups of patients a334

drug should be targeted toward.335

Methodology336

337

– Study setting338

The study will be conducted at the UNC Health Care System, where UNC Hospitals is339

a public, academic medical center that serves patients across North Carolina. All clinical,340

research and administrative data from UNC Health Care is housed in a central data repository341

called the Carolina Data Warehouse for Health (CDW-H). Data in the CDW-H consists of342

over 5 million unique patients with over 1 million active patients from 2004 onward and can343

be accessed by investigators with approval from the Institutional Review Board (IRB). As of344

2014, UNC Health Care transitioned into the current EMR system and converted into the345

ICD-10 coding system in 2015. The data in CDW-H consists of legacy data and data from the346

current EMR system. While some structured data from the EMR can be de-identified, the347

unstructured clinical notes are considered identifiable due to HIPAA indicators found in the348

notes and require IRB approval for access. After IRB approval, a CDW-H Project Request349

form will be submitted to the North Carolina Translational and Clinical Sciences Institute350

(NC TraCS), which is an honest broker between researchers and the CDW-H, and considered351

based on feasibility, scope, and time and cost estimates. An NC TraCS data analyst will then352

extract and process the data for use [38].353

The Carolina Mammography Registry (CMR) will be used as an additional data source for354

breast cancer if needed. The CMR is a source for community-based mammography screenings355

in North Carolina. Previous research has connected the CDW-H to the CMR, and if needed356

for the breast cancer condition case, the CMR and CDW-H will both be connected.357

– Subjects358

The conditions that will be considered are breast cancer, oral cancer, and primary ciliary359

dyskinesia (PCD). The conditions considered vary in prevalence, targeted population, and360

degree of medical need, providing a spectrum of test cases for the EMR phenotyping and361

validation algorithms proposed. For PCD, patients with a diagnosis in the date range, July362

1, 2004 to May 10, 2020, will be included. IRB approval has been obtained to access data363

for patients with likelihood of PCD. For breast cancer and oral cancer, IRB approval has not364

been obtained; therefore, all patients diagnosed with breast cancer or oral cancer in the date365

range, July 1, 2004 to the date of IRB application submission, will be included in the study.366

Aim 1. Produce A Computational Phenotyping Algorithm Using Electronic367

Medical Records.368

3.1.1 Significance369

Past studies [10] for validation of drug repurposing candidates have solely used ICD-CM370

diagnosis codes to identify patient cohorts, but these codes are meant for billing. Many rare371

conditions do not have specific ICD-CM billing codes and fall under an “Other” category.372

For example, PCD does not have a specific ICD-CM code. Instead, it falls under an umbrella373
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Figure 2: Aim 1 Flowchart

code called “Q34.8: Congenital pulmonary airway malformation”. Breast cancer and oral374

cancer both have specific ICD-CM codes. However, breast cancer ICD-CM codes do not375

provide enough granularity about molecular subtype. Using other sources of information376

to supplement the diagnosis codes will make the extracted disease diagnosis more reliable.377

This aim is to incorporate different elements of the EMR to identify patient populations in378

a way that will enable drug repurposing validation analysis for researchers without much379

additional cohort manipulation. A previous study, Pfaff et al (2020)[39], has demonstrated380

success identifying PCD patients with high confidence, but the study only used clinical notes381

as a data source. This aim will take both structured and unstructured elements of the EMR382

to computationally phenotype patients. EMR provide a comprehensive view of a patient’s383

health, and properly identifying a cohort is an important step for any retrospective clinical384

analysis study, especially within drug repurposing research.385

3.1.2 Study Design386

A computational phenotyping algorithm will be created to thoroughly identify patient387

populations for drug repurposing validation studies using EMR. Figure 2 shows the study388

design from cohort identification to evaluation. The goal is to computationally phenotype389

patients in three use cases (i.e., condition cases). EMR phenotyping prior to case/control pre-390

diction will be divided into two tasks: (1) extracting structured information and (2) extract-391

ing unstructured information. Structured information is comprised of patient demographics,392

billing codes, laboratory tests, medications, treatment, and vitals. Unstructured information393

consists of clinical notes and images. Since the goal is to identify patient populations for394

drug repurposing validation, medications will not be used as a source of information influ-395

encing identification. Only billing codes, laboratory tests, and clinical notes will be used for396

computational phenotyping. Due to differences in sample size from i2b2 cohort estimation,397

the process of extracting a disease diagnosis will differ between the conditions chosen. For398
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example, for rare diseases like PCD, diagnosis itself is an ongoing research area, so a PCD-like399

diagnosis may also be considered. The aim is to computationally phenotype the conditions400

for cohort extraction generally before elaborating or fine tuning based on each condition. The401

process for extracting patient information will initially be the same for all condition cases, but402

fine tuning will then be done for each condition case. For example, oral-specific information403

will only be extracted for the oral cancer condition case. The final output of the aim will be404

a cohort of individuals divided into cases (i.e., patient has disease) and controls (i.e., patient405

does not have disease) or divided by case type (e.g., triple negative breast cancer).406

3.1.3 Methods407

3.1.3 (a) General approach408

Before EMR extraction, cohort sizes will be approximated using Informatics for409

Integrating Biology and the Bedside (i2b2)[40]. i2b2 is a web application that is a view410

of UNC Health Care data, and it allows for the investigation of de-identified, aggregate411

data. The Electronic Medical Record Search Engine (EMERSE)[41] allows users to412

search through unstructured, identified clinical notes from the EHR and will be used to413

narrow down the starting patient set (Figure 2). i2b2 provides information on structured,414

discrete data in CDW-H, while EMERSE provides key background information that415

allows users to identify patient cohorts based on characteristics like patient symptoms416

(e.g., wet cough) and social history (e.g., tobacco use). After cohort exploration, an417

analyst from NC TraCS will retrieve the EMR from CDW-H.418

To identify disease diagnoses, computational phenotyping methods can be used to419

leverage various types of information found in the EMR. A combination of clinical notes,420

billing codes (ICD-9-CM and ICD-10-CM), and laboratory results will be used to extract421

patient records of a specific disease diagnosis. The clinical free-text is used to document422

clinical events and contains key information that may not be included in structured423

data. The clinical Text Analysis and Knowledge Extraction System (cTAKES) is an424

NLP system for information extraction from clinical free-text that uses rule-based and425

machine learning techniques in various modules that allow for named entity recognition426

of different clinical entities [42]. cTAKES will be used to process and annotate the427

clinical free-text. Billing codes and laboratory results will be extracted from structured428

fields in the EMR.429

3.1.3 (b) Condition case: Breast cancer430

Female patients with a breast cancer diagnosis will be extracted. Breast cancer in431

males will not be considered in this research. Patients will be considered as having a432

breast cancer diagnosis if an abnormal mammogram is found in the CDW-H. If more433

information is needed, records will also be checked in the CMR.434

Patients with different types of breast cancer must be grouped to account for vari-435

ations in treatment strategy. The two factors associated with subtype classification are436

hormone receptors (HR) and human epidermal growth factor 2 (HER2). Patients will437

either be positive (+) or negative (-) for having either HR or HER2 or both affect tumor438

growth. There are four female breast cancer subtypes, shown in Table 2 [43].439
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Table 2: Breast cancer subtypes

Subtype Details
Frequency of

invasive breast cancer

Luminal A HR+/HER2- 30-40%

Triple Negative/Basal-like HR-/HER2- 15-20%

Luminal B
HR+/HER2+
or HR+/HER2-

20-30%

HER2-enriched HR-/HER2+ 12-20%

Molecular subtypes of breast cancer play a significant role in treatment identification.440

For example, for patients with TNBC, since the growth of the cancer is not associated441

with HER2 protein, progesterone or estrogen receptors, drugs targeting these receptors442

would not be suitable for treating TNBC.443

3.1.3 (c) Condition case: Oral cancer444

Patients with an oral cancer diagnosis will be extracted. A diagnosis will consist445

of having cancers of the tongue, lips, floor of the mouth, palate, gum, salivary gland446

or other unspecified parts of the mouth. Risk factors that will be considered as patient447

clinical covariates include tobacco use, alcohol use, testing positive for human papillo-448

mavirus (HPV), age and more. Patient records will need to be examined to understand449

the original structured record and clinical note formatting for oral cancer. During regular450

dental examinations, a dentist will assess characteristics of the mouth. If change in tex-451

ture, discoloration, ulcers, growths, lymph node enlargement, or fixed lymph nodes are452

detected, there may be suspicion of oral cancer. If there are any abnormal characteris-453

tics, the following details are recorded: location, size of lesion, consistency of tissue, and454

induration. If oral cancer is suspected in any areas of the mouth previously described,455

a biopsy will be ordered. If cancer is confirmed, possible treatments include excision,456

chemotherapy, radiation therapy, and topical medications. Accurate identification of the457

area of the mouth with cancer plays a significant role in deciding which treatment to use458

[44].459

Based on the dental care path, characteristics of the mouth associated with oral460

cancer can be used as features to discriminate between cases and controls in a cohort.461

The characteristics listed are found in the clinical notes of a patient record. EMERSE462

will be used to explore the clinical notes for oral cancer characteristics. If a biopsy463

has been done, the biopsy results would be listed in both the clinical notes and in the464

laboratory results in structured data. With a positive biopsy, it can also be assumed that465

a patient would receive a corresponding ICD-CM code associated with having cancer in466

part of the mouth, but the positive biopsy laboratory result will be the main determinant467

of case or control status for a record.468

3.1.3 (d) Condition case: PCD469

Based on ICD-9-CM and ICD-10-CM codes, patients with the following diagnoses470

will be extracted: PCD, cystic fibrosis (CF), and non-CF bronchiectasis (PCD/CF/BR).471

Since PCD has no ICD-CM code, the general code will be used. Patients with CF and472

non-CF bronchiectasis will be included because current management of PCD is based473

on studies for these conditions. In addition, rare diseases generally have small cohort474

sizes, and to facilitate analysis of high-dimensional data like EMR with various methods475

including machine learning techniques and traditional statistical approaches, sufficient476

12



cohort sizes are needed to produce results without significant bias or variance. By477

incorporating patients with PCD/CF/BR that have similar pulmonary phenotypes, the478

sample size will be more suited for the usage of various techniques.479

The Clinical Annotation Research Kit (CLARK) has already been used at UNC to480

identify undiagnosed individuals from the CDW-H with high likelihood of PCD with481

high sensitivity (0.88) and specificity (1.0) [39]. Since there is an existing computational482

phenotyping effort for PCD at UNC, the feature list from that effort and gold standard,483

annotated notes from subject matter experts will be requested for this work. A few484

identified discriminating features from Pfaff et al (2020)[39] include: “situs inversus”,485

“denies shortness of breath”, and “ear tubes”.486

EMERSE will be used to find patients with abnormal pulmonary phenotypes based487

on discriminating features. i2b2 will be used to identify all patients with a PCD/CF/BR488

diagnosis code. An NC TraCS expert will extract patient records from the CDW-H using489

the patient set resulting from the i2b2 query and the patient set exported from EMERSE.490

The goal behind using both the structured data and clinical notes for cohort extraction491

is that the starting cohort will be more comprehensive than it would if only one data492

source were used.493

3.1.3 (e) Predictive modeling494

Logistic regression will be used for all condition cases. However, based on the con-495

dition case, the outcome variables will vary. Logistic regression is a classifier that makes496

predictions based on the linear distribution of features. In other words, it creates a497

dividing hyperplane with a linear classifier to predict the probability of an instance (i.e.,498

record) belonging to its given output class. Multivariate logistic regression is used to499

assess the association between independent exposure variables and an outcome variable,500

while accounting for confounding factors.501

3.1.4 Analytic Plan502

3.1.4 (a) General approach503

Cohort size will be estimated based on ICD-9-CM and ICD-10-CM codes using504

i2b2. Estimated cohort size will be assessed based on diagnoses made in the respective505

timeframes for each condition case. EMERSE will be used to narrow down the patient506

set. After estimation using i2b2 and EMERSE as well as IRB approval, a request will507

be made to the CDW-H to extract the EMR. Clinical notes, laboratory results, and508

ICD-CM codes will be extracted from the EMR for each condition case.509

The data variables mentioned in Section 3.1.3 (p. 11) will be queried from the510

CDW-H. Separate CSV’s will be used for clinical notes, laboratory results, and billing511

codes. The data will be placed in a CSV format and manipulated in the following steps:512

i. Ensure CSV headers and row labels are uniform.513

ii. Identify rows with missing data variables, and output percentage of rows with miss-514

ing data as well as number of missing data values within each record. If <10% of515

rows have missing data, remove all patients with missing variables. If there are any516

data variables where >50% of patients have missing data, the data variable list must517

be refined or a different source for the variable must be found.518

iii. Correct for data variable type issues (e.g., converting lab value from string to inte-519

ger).520

iv. Remove any unreadable characters.521
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For clinical notes, extra pre-processing steps will be taken in order to make the data522

easier to analyze. The notes will be converted into text representations for each patient.523

The process for preparing the notes may change based on how NC TraCS provides the524

data. In addition, some of the notes will need to be read to understand which sections525

will be necessary for identifying a diagnosis. For each patient record, the following steps526

will be taken:527

i. Clinical notes will be separated by datestamp.528

ii. Each note will be assigned section tags, if they are not already.529

iii. Within a section, the text will be processed with cTAKES. The following functions530

within cTAKES will be used: separating text by sentence, detecting negation (e.g.,531

not metastatic), and named entity recognition.532

3.1.4 (b) Condition case: Breast cancer533

All female patients in the CDW-H with abnormal mammograms will be used as a534

starting cohort. The task for breast cancer is for an algorithm to be able to detect the535

molecular subtype based on the three data sources provided. The clinical notes will536

include pathology notes, which will be the most indicative of breast cancer subtype.537

All relevant laboratory results, billing codes, and clinical text features will be used as538

features for the algorithm.539

3.1.4 (c) Condition case: Oral cancer540

If a patient record includes a positive biopsy result, the record will be included541

in the study. In addition, all patient dental records will be queried for the abnormal542

characteristics listed in Section 3.1.3 in the CDW-H using EMERSE. If any abnormal543

characteristics are found within the clinical notes for a patient, the patient record will544

be included in the study. Therefore, the starting cohort will consist of all patients with545

abnormal mouth characteristics and positive biopsy results listed in their patient records.546

The task for oral cancer is for an algorithm to be able to detect whether the patient has547

oral cancer or not. The predictive model will be trained on cases with positive biopsy548

results, and tested on cases with suspicion of an oral cancer diagnosis. The location of549

the cancer is also important for making treatment decisions; therefore, feature extraction550

is important for this condition case.551

3.1.4 (d) Condition case: PCD552

All patients with a PCD/CF/BR diagnosis or history of abnormal respiratory phe-553

notypes will be used as a starting cohort. An i2b2 query will be constructed using554

ICD-CM codes and date filters. An EMERSE search will consist of finding abnormal555

respiratory events (e.g., chronic sinusitis). The task for PCD is for an algorithm to be556

able to detect PCD and PCD-like diagnoses. For the PCD true cases, the records will be557

examined for PCD laboratory results in the structured data and in the pathology notes.558

UNC also has PCD mutation testing with a CPT code, so provided the information is559

in the CDW-H, the testing results can also discriminate PCD true cases. This will be a560

binary classification, with the positive class being PCD (1) and the negative class being561

PCD-like (0).562

3.1.4 (e) Data analysis and predictive modeling563

General statistics will be used to gain an understanding of distributions in each con-564

dition case cohort. For each patient characteristic, the following will be outputted: the565

number (N) or mean number of patients and the percentage or standard deviation (SD)566
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of patients within each patient characteristic category. For example, age at diagnosis567

could be divided into five groups with an N and SD for each of the five groups.568

The dataset will be split into stratified train and test sets, where 80% of the data will569

be used for training and 20% will be used for testing. Cross-validation will be used on the570

training set to train the model. Cross-validation is an evaluation method that can avoid571

overfitting of the model. 10-fold cross-validation consists of using 90% of the training set572

for training and 10% of the training set for testing. The portion of the training set used573

for testing will rotate across the folds, until every 10% slice of the training set has been574

used for testing once. In the algorithm tuning process, feature engineering will be used575

to identify meaningful features from the data, using feature importance as a measure.576

After training, the model will be tested on the 20% of the data held out as a test set.577

The Scikit Learn package will be used to conduct all analysis in Python [45].578

3.1.5 Measures for evaluation579

Odds ratio and adjusted odds ratios will be used for confounding factors. The percentage580

of missing data will be used to assess data completeness. A stratified random sample of clinical581

records from the control and treatment groups will be taken and two experts will indepen-582

dently review the medical records to assess algorithm performance and confirm case/control583

or case type classification. Any discrepancies will be resolved through discussion between the584

reviewers. Cohen’s kappa coefficient will be used to measure inter-rater reliability:585

k =
Pr(a)− Pr(e)

1− Pr(e)

where Pr(a) indicates the agreement that is present and Pr(e) indicates the agreement by586

chance [46].587

The prediction algorithm performances will be assessed with the following evaluation588

metrics: accuracy, precision (i.e., specificity), recall (i.e., sensitivity), and F-score.589

Precision =
TP

TP + FP
590

Recall =
TP

TP + FN
591

F − score = 2 ∗ Precision ∗Recall

Precision + Recall

where TP is the number of true positives, FP is the number of false positives, and FN is the592

number of false negatives.593

3.1.6 Potential Challenges and Limitations594

For each condition case, there may be different potential challenges. With breast cancer,595

screening and diagnosis is already well-established, so it is not necessary to find whether a596

patient has breast cancer or not. The study can begin with patients who have already con-597

firmed having breast cancer. However, discriminating between different cancer subtypes is an598

important research area. A potential challenge for identifying a multi-class problem is that599

many algorithms function better with binary classification, and there is more support from600

various Python packages for binary classification. Although this is a potential challenge, this601

can be mitigated by adapting functions that are currently written for binary classification to602

15



multi-class classification. With oral cancer, there is a similar challenge because it is neces-603

sary to know which part of the mouth is affected when deciding on treatment. However, if604

documentation is clear, this could also be solved with a rule-based approach. An additional605

limitation is the disconnection between dental records and records in the CDW-H. All cohort606

estimates will be made using i2b2, meaning that all estimates will reflect what data is in607

CDW-H. Therefore, dental records will not be included; however, a future direction is to608

connect the CDW-H and dental records to ensure the cohort contains all possible patients.609

For PCD, the major challenge is that diagnosis itself is an ongoing research area, so identi-610

fying and evaluating PCD-like phenotypes will determine the success of the approach. For611

evaluating the case/control or case type classification, the aim is to have two subject matter612

experts review a stratified random sample of patient records. To do so, the subject matter613

experts need to be paid, so I am applying to grants such as the NC TraCS $2,000 grant. The614

back-up option for evaluation is to find existing gold standard datasets for testing.615
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Aim 2. Build A Pipeline For Retrospective Clinical Record Analysis To Validate616

Drug Repurposing Candidates.617

Figure 3: Aim 2 Flowchart- Baseline Approach

Figure 4: Aim 2 Flowchart- Proposed Approach
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3.2.1 Significance618

EMR validation of drug repurposing candidates has historically been done using statistical619

approaches and logistic regression as a machine learning approach. Traditional machine learn-620

ing approaches, including logistic regression, will be explored as a baseline for the proposed621

approach. Machine learning models work well with small sample sizes, are transparent, and622

are easily interpretable. However, they require feature engineering and annotated datasets.623

The proposed approach builds off of the existing studies to explore deep learning methods for624

EMR validation. As shown in other domains, deep learning approaches can achieve higher625

performance than classical machine learning algorithms, do not require feature engineering,626

and can be generalized to various datasets. However, they are not as interpretable as machine627

learning algorithms, are computationally expensive, and are greedy in terms of sample size628

required to achieve high accuracy. The aim for the proposed study is to create an EMR629

validation algorithm that can be generalized to different condition cases, and the proposed630

methods will allow for that generalization.631

3.2.2 Study Design632

The study will be conducted to validate drug candidate predictions in three use cases633

(i.e., conditions). Steps for the study will consist of: data extraction, algorithm development,634

and evaluation, as shown in Figures 3 and 4. All relevant information will be extracted from635

EMR records for patients of each condition case. The case/control distinction in the cohort636

of patients can either be from the Aim 1 output (Figure 2), or the controls can be “normal”637

patients without any symptoms of each condition case. The cohort will be defined in detail638

after data exploration. The data will be processed into a format suitable for statistical and639

machine learning analysis. General features will be included for all patient records, regardless640

of condition cases. Condition-specific features will be identified and added for each condition641

case in the baseline approach (Figure 3). The proposed method will take a more generalizable,642

representation learning approach (Figure 4).643

The task for this study is to predict the probability of treatment success. The classification644

task will be binary (i.e., disease improvement, no disease improvement), where the definition645

of true positives would be indicators of positive outcomes. For all condition cases, vital signs646

can be used. For breast cancer and oral cancer, tumor size shrinkage will be the indicator647

for disease improvement. For PCD, increased airway health, as marked by sputum cultures648

and spirometry testing, will be the indicator for disease improvement. Machine learning649

algorithms will be used as a baseline for the task, and deep learning methods will be explored650

in the proposed approach.651

3.2.3 Methods652

3.2.3 (a) Cohort size estimation653

The input for the study is a list of drug-disease repurposing predictions. Before654

EMR extraction, cohort size estimation will be done in the same way as Aim 1. Cohort655

sizes will be assessed using i2b2 [40]. i2b2 is a web application that is a view of UNC656

Health Care data, and it allows for the investigation of de-identified, aggregate data.657

3.2.3 (b) Baseline approach658

Data extraction and manipulation659

EMR data extraction will be divided into two tasks: (1) extracting medications used660

(2) extracting patient clinical covariates. The process of extracting medications will be661
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the same across condition cases. The process for extracting patient clinical covariates662

will initially be the same for all condition cases, but fine tuning will then be done for663

clinical covariates specific to each condition cases. For example, age at diagnosis and664

gender will be extracted for all condition cases. However, cancer-specific covariates, such665

as tumor stage, will only be extracted for cancer condition cases.666

For clinical covariate fields with missing data, NLP algorithms will be used to extract667

the information from unstructured clinical notes. cTAKES will be used to extract any668

covariates missing in structured fields from clinical narratives. Similarly, although the669

structured data contains a medication list, medication data is often recorded in clinical670

free-text. From medication orders and clinical narratives, an NLP algorithm, MedEx,671

will be used to identify medications. MedEx is a rule-based NLP system that extracts672

medication information such as drug names, dose, route, and frequency from clinical673

free-text [47]. The results from MedEx will be organized and filtered by which drugs are674

meant for the given indication, which are evidence of off-label usage, and which are due675

to a patient having multiple conditions.676

Predictive modeling677

The task will consist of predicting the probability of treatment success for the pre-678

dicted drug based on relationships between features from the EMR. The task can be679

described as prediction of the outcome variable where 1 = disease improvement and 0680

= no disease improvement. The experiment will use three machine learning algorithms681

for prediction: logistic regression, random forest [48], and support vector machine [49].682

Feature engineering with feature importance or feature ablation will be used to tune the683

algorithms. Feature importance techniques assign each feature a score based on how684

useful it is in predicting the output variable. Feature ablation is the process of removing685

features individually to identify a feature set that will provide optimal performance.686

Logistic regression, where the outcome variable is disease improvement and input687

variables are patient clinical covariates and medications, will be used as a baseline for this688

analysis as it has previously been used for drug repurposing candidate validation [36].689

Logistic regression is a classifier that makes predictions based on the linear distribution690

of features. In other words, it creates a dividing hyperplane with a linear classifier to691

predict the probability of an instance (i.e., record) belonging to its given output class.692

SVM is similar to a one-layer neural network and functions by identifying the optimal693

hyperplane for classification. With a linear decision function, if the points are linearly694

separable in 2D, SVM works like linear regression. In this way, SVM is similar to695

logistic regression. However, if the points are not linearly separable in 2D, the SVM696

functions by mapping to higher dimension spaces and finding linear separation. The697

same logic applies to using other decision functions for SVM classification. Random698

forest is an ensemble machine learning method that uses bootstrap aggregation (bagging)699

and feature randomness techniques to create uncorrelated decision trees. The classifier700

then uses the series of trees to predict individual outputs and selects the output with the701

highest number of votes as the final prediction. Based on data received, other algorithms702

may be tested against the three highlighted in this proposal as well.703

3.2.3 (c) Proposed approach704

For data extraction and treatment success probability prediction, the proposed ap-705

proach will use deep neural networks. A neural network is a series of processing nodes706

that are densely connected into layers. Most neural networks are feed-forward, meaning707

that data moves in one direction through the network from the input layer to the output708
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layer. The advantage of representation learning methods, like deep learning methods, is709

in their data processing capabilities. Traditional machine learning algorithms require ex-710

tensive data pre-processing and feature engineering, while representation learning meth-711

ods allow a machine to take raw data and learn representations from them. In particular,712

deep learning methods are useful for learning the intricacies of high-dimensional data,713

like EMR data [13].714

Data extraction and manipulation715

EMR data extraction will consist of extracting structured data and extracting data716

from the clinical notes. Structured data will be extracted from the CDW-H by an717

NC TraCS analyst and be used as part of the input for the predictive model without718

extensive pre-processing. Like in the baseline approach, patient clinical covariates and719

medications used will be extracted from structured data. From the unstructured portion720

of the EMR, a deep neural network will be used to extract and manipulate information721

from the clinical notes. The input will be the clinical notes, and the output of the model722

will be a series of word embeddings, which a predictive model would be able to process.723

A Bidirectional Encoder Representations from Transformers (BERT) model[50] will724

be used. BERT is a deep neural network that uses transformer architecture to learn text725

embeddings. BERT functions by taking a sequence of words and learning the contextual726

relationships in the sequence. There are two components in BERT: a transformer encoder727

layer and a classification layer. For each sequence of words (i.e., tokens), the following728

information is needed:729

• Masked tokens730

• Tokens at the beginning <cls> and ending <sep> of the sequence, where cls is used731

for classification and sep is used for separation.732

• Sentence embedding733

• Positional embedding for each token734

In the case of NER, each masked token is a named entity and the output of the BERT735

model would be the NER label. Pre-trained embedding models are becoming more736

useful for various tasks, but for biological and clinical tasks, domain-specific knowledge737

for pre-training can improve performance in comparison to using general knowledge.738

ClinicalBERT is a BERT model that has been pre-trained on clinical notes [51, 14].739

Alsentzer et al (2019)[51] describes how clinical notes have different linguistic character-740

istics in comparison to general and biomedical articles, creating a need for models trained741

on clinical narratives. The study used MIMIC III narratives and discharge summaries to742

train BERT models with clinical-specific contextual embeddings. They have made the743

pre-trained models publicly available on Github [52]. Huang et al (2019)[14] further de-744

veloped a ClinicalBERT model and compared the performance of ClinicalBERT to other745

commonly used word embedding models such as word2vec to show the improvement in746

performance. In comparing pearson correlation between cosine similarity of embeddings747

from clinical text models and physician ratings of medical concepts, ClinicalBERT and748

word2vec achieved 0.670 and 0.553 pearson correlations, respectively. In addition, the749

study found that word2vec did not perform as well with “out of vocabulary” words750

in comparison to ClinicalBERT, providing more motivation for using a ClinicalBERT751

model over other word embedding models. The traditional BERT model trained on752

clinical narratives will be used for EMR data manipulation from the clinical notes and753

compared to the baseline approach.754
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Predictive modeling755

The task will consist of predicting the probability of treatment success for a predicted756

drug where the outcome variables are 1 = disease improvement and 0 = no disease im-757

provement. The probability of treatment success will be considered the prediction prob-758

ability, which is the algorithm confidence for a given prediction. The experiment will use759

a multiple input neural network for prediction. Generally, neural networks use a single760

data type for prediction. For example, the ClinicalBERT model described previously761

will only take clinical notes, which are text data, as its input. However, for predicting762

disease improvement, discrete data variables (e.g., age, gender, race) are necessary. A763

multiple input neural network will be able to use the word embeddings generated by the764

ClinicalBERT model alongside the discrete data variables for prediction.765

3.2.4 Analytic Plan766

3.2.4 (a) Cohort size estimation767

Cohort size will be estimated based on ICD-9-CM and ICD-10-CM codes using768

i2b2. Estimated cohort size will be assessed based on a condition case diagnosis made769

within a given timeframe, where condition case diagnosis refers to a diagnosis for any770

of the condition cases (i.e., breast cancer, oral cancer, PCD/CF/BR). The patient set771

selected will then be queried for a disease diagnosis for the original indication of a772

drug candidate. For example, if the drug candidate is metformin, diabetes mellitus,773

the original indication, will be queried in the patient set. For a patient set with the774

condition case diagnosis, the set will be queried for any use of the drug candidate after775

the diagnosis date. If the drug candidate has not been administered for individuals776

with a condition case diagnosis, the next drug repurposing candidate will be assessed.777

For patient sets that include both drug candidates and a condition case diagnosis, any778

patients with contraindications prior to diagnosis for the drug repurposing candidate779

will be removed from the cohort. For example, if the drug candidate is metformin, it780

cannot be taken by patients with chronic kidney disease. Therefore, patients with a781

condition case diagnosis and chronic kidney disease will be removed from the cohort782

[10]. Contraindications will be identified with ICD-9-CM and ICD-10-CM codes in i2b2.783

For the predictions associated with sufficient cohort sizes, EMR will be extracted.784

After estimating cohort size using i2b2 and IRB approval, a request will be made785

to CDW-H to extract the EMR. The components extracted from the EMR would in-786

clude structured data (e.g., the problem list, patient demographics), unstructured clin-787

ical notes, and laboratory results. Disease diagnosis, and features like patient clinical788

covariates and medications will be extracted from these components. Patient clinical co-789

variates that will be extracted include: age at disease diagnosis, height, weight, gender,790

race, smoking status, zipcodes, as well as diabetes and high blood pressure diagnoses.791

3.2.4 (b) Baseline approach792

Data extraction and manipulation793

The clinical notes for each patient will be annotated with cTAKES [42]. The fol-794

lowing functions will be used: sentence boundary detector, tokenizer, normalizer, part-795

of-speech (POS) tagger, shallow parser, and NER with negation and status annotators.796

All of these functions will be used within the cTAKES system, as opposed to Scikit797

Learn[45], in order to account for properties specific to clinical notes. In cTAKES, the798

sentence boundary detector predicts punctuation type at the end of a sentence. The799

tokenizer separates words by spaces and also merges tokens to account for various data800
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types like date and range. The normalizer is used to map mentions of the same word801

that have different string representations. The POS tagger and shallow parser are used802

to add sentence structure annotations. The NER component draws from SNOMED803

CT[53], Unified Medical Language System (UMLS)[54], and RxNORM[55] to identify804

and annotate terms in the clinical notes. The negation and status annotation portions805

of NER search for words that indicate negation (e.g., not bleeding) and status (e.g.,806

family history of) respectively. The medications administered will then be extracted807

from structured fields. MedEx will be used to identify medication data not in structured808

fields and provide context for medication use from the clinical free-text.809

Predictive modeling810

The training and testing process described in Section 3.1.4 will be used. The dataset811

will be split into stratified train and test sets, where 80% of the data will be used812

for training and 20% will be used for testing. Cross-validation will be used on the813

training set to train the model. Cross-validation is an evaluation method that can avoid814

overfitting of the model. 10-fold cross-validation consists of using 90% of the training815

set for training and 10% of the training set for testing. The portion of the training set816

used for testing will rotate across the folds, until every 10% slice of the training set has817

been used for testing once. In the algorithm tuning process, feature engineering will be818

used to identify meaningful features from the data. Feature importance will be assessed819

for logistic regression and random forest. For SVM, feature importance can only be820

assessed if the SVM has a linear kernel. Linear and non-linear kernels will be tested821

during training, and feature importance will be reported if a linear kernel is selected. If822

a linear kernel is not selected, feature ablation will be used to assess the importance of823

data features. After training, the three models will be tested on the 20% of the data824

held out as a test set. The Scikit Learn package will be used to conduct all analysis in825

Python [45].826

3.2.4 (c) Proposed approach827

The development process for the data extraction and manipulation and predictive828

modeling sections will be the same. The dataset will be split into three sets: train829

(70%), development (10%), and test (20%). The development set will be used to fine830

tune hyperparameters, and the test set will be used to assess overall algorithm perfor-831

mance. All analysis will be done using the Keras framework[56] which is built on top of832

TensorFlow[57] in Python.833

Data extraction and manipulation834

The pre-trained ClinicalBERT model by Alsentzer et al (2019)[51] will be obtained835

from the project Github page [52]. The clinical notes for patients of each condition case836

will be divided into sections as described in Section 3.1.4. Dimensions of pre-trained word837

embedding models, number of epochs, batch size, learning rate, and max predictions per838

sequence will be considered for fine tuning the ClinicalBERT model. These parameters839

were also considered in Alsentzer et al (2019)[51].840

Predictive modeling841

The word embeddings from the ClinicalBERT model and structured, discrete data842

from the EMR will be included as inputs for the model. Instead of stacking ClinicalBERT843

and a separate neural network with discrete data, a multiple input neural network will844

be used to combine the two feature spaces for prediction. Similar to adding metadata845

for text input, a layer of numerical features will be concatenated to word embeddings.846

This approach will be compared to one-hot encoding all discrete features and using the847
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vectors alongside word embeddings in one overarching feature space. Hyperparameters848

such as number of epochs, batch size, learning rate, and dropout will be fine tuned.849

Number of layers will also be explored.850

3.2.5 Measures of evaluation851

The prediction algorithm performances will be assessed with the following evaluation852

metrics: precision (i.e., specificity), recall (i.e., sensitivity), area under the receiver operating853

curve (AUROC), and area under the precision recall curve (AUPR). A ROC curve shows the854

trade-off between true positive and false postive rates. A precision recall curve shows the855

trade-off between precision and recall at various thresholds. To define true positives, a cut-off856

will be taken after making a distribution plot of values from disease improvement indicators857

(as described in Section 3.2.2).858

Precision =
TP

TP + FP
859

Recall =
TP

TP + FN

where TP is the number of true positives, FP is the number of false positives, and FN is the860

number of false negatives.861

3.2.6 Potential Challenges and Limitations862

From an overall study perspective, a limitation of the work is that pharmacy fill records863

will not be used as a data source. Using fill records would provide more solid evidence for864

when each medication exposure took place, but medication exposures extracted from EMR865

have been shown to indicate timeline with high performance in the related work.866

From a methodological perspective, a known weakness of neural networks is that they867

are not as interpretable as machine learning models. For the proposed approach, attention868

weights will be examined to interpret the model. In addition, a comparison will be made869

to the baseline approach to improve interpretability. Processing power is also a concern for870

deep learning methods. For training the ClinicalBERT model, Alsentzer et al (2019)[51]871

required 17-18 days of runtime on a GeForce GTX TITAN X 12 GB GPU. The advantage872

to using a pre-trained model is that processing cost is greatly reduced. The proposed study873

will be conducted using a computer with a GeForce GTX 1650 4 GB GPU. However, if more874

computing power is necessary, other options such as different training techniques and cluster875

computing will be explored.876
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Timeline877
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* For Fall 2020, the deadline for electronic submissions to the Graduate School is: November 18,
2020 before 4 pm for December graduation.
** Draft 1 will consist of- Ch 1: Introduction, Ch 2: Literature Review, Ch 3: Methods (Aim 1)
*** Draft 2 will consist of- Ch 1: Introduction, Ch 2: Literature Review, Ch 3: Methods, Ch 4:
Results, Ch 5: Discussion
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